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Abstract

It is commonly accepted that contour length fluctuations increase the viscosity
exponent for chains that diffuse by reptation. We found that length fluctuations
in the necklace model can play an unexpected role as they can also decrease this
exponent. A detailed analysis of the interplay between the discrete character
of the model and how the fluctuations take place is presented in this work.
Basically, we found that when fluctuations are symmetric their influence is the
expected one; when fluctuations are not symmetric new effects can appear.

PACS numbers: 83.10.Kn, 05.40.−a, 66.20.+d

1. Introduction

The dynamics of entangled linear polymers has been successfully described by reptation
theory [1, 2]. Reptation considers a single snakelike linear chain trapped in a network of
permanent entanglements. This network hinders lateral movements of the chain confining
its motion within a one-dimensional curvilinear path, called the tube. The model predicts
that diffusivity scales with the molecular weight as M−α, where α = 2 in three dimensions,
and that the zero-shear-rate viscosity scales as η0 ∼ Mβ, with β = 3. However, experiments
show deviations from these scalings. The challenge has been to identify the origin of these
deviations from the original predicted scaling [3].

Doi proposed that the observed scaling could be attributed to a chain springlike motion,
or contour length fluctuations (CLFs), that speed up relaxation in such a way that the viscosity
including fluctuations is smaller than the viscosity when fluctuations are not incorporated [4].
He argued that the fraction of the tube that is relaxed by fluctuations scales as M−1/2. Thus, as
M gets larger, this effect vanishes so that the viscosity increases faster than expected, meeting
the asymptotic regime from below. More recent theoretical work also supports CLFs as the
major source for scaling deviations [5].
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A second modification of the original theory comes from the fact that all the chains are
mobile and then entanglements are not permanent on the time scale of reptation. The tube
motion or constrain release (CR) is a collective effect as opposed to fluctuations which are a
single chain effect [6–12]. In experiments, tube motions can mostly be suppressed by studying
the dynamics of a small fraction of short entangled probe chains (tracer diffusion) in a high-M
matrix of low diffusivity [13–15].

Rubinstein proposed the first discretized version of the reptation model more than 20
years ago [16]. This model can predict an effective exponent for the viscosity larger than 3,
demonstrating that a simple discrete model of a single-chain dynamics can present nontrivial
behavior. Since then, other models, including different modifications of the Rubinstein
model, have been introduced. This is the case of the Duke model [17], which describes gel
electrophoresis or the fast extron model of Leegwater [18].

In this work, we study the reptation scaling in the necklace model. This is a one-
dimensional discretized model that mimics the diffusion of a chain including CLFs. We
avoid a number of complications that can arise in a realistic model. We do not focus on
reproducing experiments but on presenting a very simple model with rich behavior. Extending
our previous work [19, 20], we especially focus on cases in which diffusion shows the
original reptation scaling with the chain length, so the viscosity scaling is not affected by
the diffusivity scaling. It is shown that chain-length fluctuations can affect viscosity in an
unexpected way. Also, comparison with the resulting viscosity of a rigid-length chain indicates
that fluctuations can increase or decrease the viscosity exponent. These results show that the
manner in which fluctuations behave can be crucial in discretized models such as the necklace
model.

2. Model

The discretized version of reptation known as the necklace model, in which hardcore
interactions are included, will be studied [19, 20]. The model consists of a one-dimensional
chain with N beads or particles. The hardcore interactions are incorporated by considering that
beads can hop to a nearest site only if this site is empty. Particles can hop to the right or left
but no more than one site can be empty between two particles which preserves chain integrity.
If allowed by these rules, the probability for a hopping is the same for all the particles except
for those at the ends. Indeed, a middle particle jumps with a probability per unit time pc while
end particles are allowed to jump with probabilities per unit time pa and pb when jumping
stretches or compresses the chain, respectively (see figure 1) (for more details, see [19, 20]).
Hence, pa, pb and pc are the free parameters in the necklace model. In the following, we
use that the distances between the adjacent sites of the lattice and the unit time are both equal
to 1.

3. Theoretical considerations

Reptation scaling can readily be derived by resorting to the Einstein relation [1]. If all beads
have the same behavior, the frictional force is proportional to the number of beads in the chain,
N. Then, the mobility μ must be equal to μ1/N, where μ1, independent of N, is the mobility
of a single bead. The Einstein relation states that mobility and diffusion are proportional,
therefore the one-dimensional diffusion coefficient or tube diffusivity, Dtube, must be equal to
D1/N, where D1 is the diffusion coefficient of a single bead; i.e., Dtube ∝ 1/N . To escape from
the original tube, the chain must progress along the tube a distance L, which is proportional to
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Figure 1. Configurations for end ((a), (b)) and middle particles ((c)–(e)), and their hops. In
configurations (d) and (e), jumps are not possible because there is not a neighboring hole and only
one hole is allowed between particles.

N. The time required for this is

τ ∝ L2

Dtube
= NL2

D1
∝ N3. (1)

Let us stress that, at this point, we assume the absence of length fluctuations. As the zero-
shear-rate viscosity is proportional to τ , the original reptation theory predicts an exponent
β = 3.

While a reptating chain moves a length L along its tube, in space this motion corresponds
to a much smaller displacement because the tube is contoured. More specifically [21], after
a given time, the chain diffuses out of its initial tube and is in a new configuration confined
in a new tube, which is uncorrelated with the initial one. To do this, the chain must diffuse a
distance of the order of its length. In its new configuration, the center of mass of the chain is
displaced from the initial position by an amount proportional to the chain’s span, which goes
as N1/2 for a Gaussian chain. Then one obtains

Drep ∝ Dtube

N
, (2)

and thus, Drep is proportional to N−2. Deviations of the diffusion coefficient from the N−2

scaling could be due to the failure of equation (2). However, the extension of the necklace
model in two and three dimensions in the case pa + pb = pc scales as N−2, for N � 10,
as shown in [22]. Anyway, these details do not affect our conclusions because we focus on
viscosity through the manner a chain abandons its original tube.
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In the necklace model, an empty site in the chain is named a hole. The probability of
having a hole between two particles can easily be calculated as shown in [19]:

Ph = pa

pa + pb

. (3)

Note that Ph is independent of pc. The average number of holes in a chain is Ph(N − 1) since
there are (N − 1) positions available for holes. Then the average length of a chain and its
fluctuation amplitude are given by

〈L〉 = N + Ph(N − 1), (4)

〈(L − 〈L〉)2〉 = (N − 1)Ph(1 − Ph). (5)

Recently, the exact analytical expression for the diffusion coefficient for the one-
dimensional necklace model has been obtained [23, 24] (see also [25] where related results
were obtained), and it is given by

D = papbpc

(pa + pb) [(N − 2)(pa + pb) + 2pc]
. (6)

The mean jumping frequencies of an end particle (ke) and a middle particle (km) can be
calculated (see [23]). The ratio between these jumping frequencies is

ke

km

= pa + pb

pc

. (7)

If pa + pb = pc, the probability of jumping is the same for every particle of the chain.
Under this condition, all particles behave similarly and then the diffusivity presents the scaling
originally predicted for reptation, namely Dtube ∝ 1/N . Indeed, in this case equation (6)
simplifies as follows:

D = papb

pc

1

N
. (8)

This means that for pa + pb = pc, the effective friction at the end particles is the same as that
at the rest of the particles in the chain. This is also confirmed in [26], where we particularly
studied the consequences of applying an external force to every particle of the chain. We found
that, when pa + pb = pc, the chains are dragged without deforming and the Einstein relation
is always valid, for chains with any number of beads and for any applied force strength. This
means that, for any N, there is a linear dependence between the drift velocity and the applied
force.

The relaxation process can be studied by following the rates at which the chain vacates the
initially occupied sites [16, 27]. The number of these sites will be denoted as l(t), that is, the
part of the original tube that has not met the chain ends during the time interval between 0 and t
[4]. The zero-shear-rate viscosity is calculated by integrating the stress, which is proportional
to l(t), i.e.

η0 = 1

〈L〉
∫ ∞

0
〈l(t)〉 dt , (9)

where L is the chain length and the brackets denote the ensemble average. Defining xR(t) as the
leftmost propagation of the bead of the right end at time t and, similarly, xL(t) as the rightmost
propagation of the bead of the left end, for the necklace model l(t) = xR(t) − xL(t) + 1,
provided that xR(t) − xL(t) + 1 � 0, l(t) = 0 otherwise.

Contour length fluctuations and constrain release or tube reorganization are not included
in the original reptation model. This model considers the random walk of a fixed length object
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Figure 2. Diffusion coefficient of the center of mass D, plotted as DN, as a function of the number
of beads N. The parameters of the model (pa, pb, pc) are (1, 1/5, 1/5) for case I, (5/6, 1/6, 1) for
case II and (5/36, 1/36, 1) for case III. Lines correspond to the analytical values of equation (6).
For the sake of clarity, results for case I were multiplied by 5 so the diffusivities for the three cases
converge to the same value for large N.

with a curvilinear (or tube) diffusion coefficient inversely proportional to its molecular weight.
Experimentally, the CR effects can be minimized in tracer diffusion because the matrix of high
molecular weight provides obstacles that confine for a larger time the reptation of tracer chains.
It is found that when the matrix molecular weight is sufficiently high, the tracer diffusivity
scales with the probe chain’s molecular weight as predicted by the original reptation theory,
i.e., Drep ∝ 1/N2 [13, 14]. Note that in these experiments CLFs are present.

The necklace model does not include CR, but chains are free to stretch and compress as
they diffuse. Indeed, a chain within the necklace model is not considered to be a rigid object
as one end moves independently of the other one. However, independent of similitudes and
differences with experiments, the main goal of the present work is to study, from a theoretical
point of view, the effects of chain-length fluctuations on viscosity in the necklace model.

4. Results and discussions

With the Monte Carlo simulation, the diffusivity of the center of mass is determined through

D = 〈[Rm(t) − Rm(0)]2〉
2t

, (10)

where Rm is the position of the center of mass. In figure 2, numerically calculated diffusion
coefficients for some given parameters are presented. We have chosen three groups of values
for the parameters (pa, pb, pc), specifically (1, 1/5, 1/5), case I; (5/6, 1/6, 1), case II and
(5/36, 1/36, 1), case III. Parameters have been chosen to always have the same average
number of holes (Ph = 5/6) and then the same average length and length fluctuations (see
equations (4) and (5)). To highlight deviations from the reptation scaling, DN is plotted. For
the sake of clarity, results for case I were multiplied by 5 so the diffusivity for the three cases
converges to the same value with N. In the asymptotic regime, D always presents a slope 1/N,
which is the expected diffusivity dependence for reptation in a one-dimensional model that
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Figure 3. The viscosity as a function of the number of beads N plotted as η0/N3 in a log–log
plot. The parameters of the model (pa, pb, pc) are (0.5, 0.5, 1). Full symbols represent the
viscosity for chains that follow the rules of our model. Open symbols represent the viscosity for
chains of constant length, 〈L〉, for which their centers of mass move as dictated by the centers of
mass of chains that follow our model dynamics during diffusion. Note that, as a consequence of
fluctuations, the viscosity exponent becomes larger.

corresponds to the tube diffusivity. The exponent α (in one dimension) for relatively small N
becomes larger (case I) or smaller (case III) than 1 because end particles present larger (case I)
or smaller (case III) jumping frequencies than middle particles. For large enough values of N,
the influence of end particles vanishes and then D always presents a slope 1/N. In case II, in
accord with equation (8), DN shows no dependence with N. In what follows, we will restrict
our analysis to cases in which pa + pb = pc for which Dtube ∝ 1/N , see equation (8), as is
predicted by the original reptation theory.

Note that the model has in principle three parameters: pa, pb and pc. However, what is
relevant in our studies is the ratio among them and thus we chose pc = 1. This reduces the
number of free parameters to 2. Finally, since we will only study the cases for which pa +
pb = pc, the model has only a single parameter, say pa = Ph. Even though we do not attempt
to reproduce experimental findings, we will work with 10 � N � 100, which approximately
corresponds to the range of molecular weights used in experiment to obtain the viscosity
exponent (N in the model plays the role of Z in [14]).

In figure 3, the numerically calculated values of the viscosity through equation (9) for a
case with pa = pb = 0.5 and pc = 1, case (a), are presented (full symbols). In order to stress
how far from 3 the exponent β is, η0/N3 is plotted. Note that even for N = 100, the steady
state viscosity values are apparently far from reaching the asymptotic behavior. The slope
found in the double logarithmic scale is not exactly equal to 3. In fact, the viscosity presents
a dependence of N3.05 that one would attribute to a CLF effect.

To check the influence of length fluctuations, we took a chain of constant length, equal to
〈L〉, and made its center of mass move as dictated by the center of mass of a chain during its
diffusion within the necklace model. Note that this is very close to the original model of de
Gennes in which there are no length fluctuations. Specifically, in the simulation we use two
chains. The first one corresponds to the necklace chain and the second one to the constant
length chain. Every time the center of mass of the first chain moves, due to the hop of a
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(d)

(c)

(b)

(a)

Figure 4. Example for a chain with N = 3 and Ph = 0.5 for the necklace and constant length
models; points correspond to the positions of the beads. (a) Initial chain configuration within the
necklace model; the number of occupied sites is l(0) = 4. (b) Chain configuration after the hop
of the left bead; the number of sites that were originally occupied is l(t0) = 3. (c) Chain in the
constant length model for which l(0) = 〈L〉 = 4. (d) The hop of a bead to the right in the necklace
model reflects as a move of 1/3 in the same direction; l(t0) = 11/3.

particle, the rigid chain is moved 1/N in the same direction the particle jumped in the first
chain.

Figure 4 shows an example for a chain with N = 3 and Ph = 0.5 in which the jumping of
a bead is described. The average chain length is 〈L〉 = 4 (see equation (4)). In (a) we depict
an initial chain configuration, arbitrarily chosen, within the necklace model. l(t) is the part
of the original tube that has not met the chain ends during the time intervals between 0 and t
used in the computation of the viscosity (see equation (9)). In the example of figure 4, l(0) =
4. At t = t0, after the left bead jumped to the right, the resulting configuration is that shown in
(b) and l(t0) = 3. In the constant length model, l(0) = 〈L〉 = 4, as shown in (c). The hop of a
bead to the right in the necklace model reflects in the constant length model as a move of 1/3
in the same direction. As a consequence, l(t0) = 11/3 as shown in (d). Note that the viscosity
is directly related to the integral of l(t).

The resulting viscosity as a function of N for rigid chains is shown in figure 3 (empty
symbols). We found that the viscosity of the rigid chain is always larger than that of the flexible
chain. This is the expected effect, as fluctuations imply an extending and compressing chain
while diffusing and then an acceleration of the stress relaxation. Since fluctuations are less
important for long chains relatively to their lengths—see equations (4) and (5)—eventually,
for large enough values of N, their effects vanish and thus the viscosities of the flexible and the
rigid chains converge. As a consequence of this, the rigid chain presents a smaller viscosity
exponent. Indeed, β reduces to almost 3, that is, the value predicted in the original reptation
model.

In figure 5, the numerically calculated values of the viscosity for a case with pa = 0.9,
pb = 0.1 and pc = 1, case (b), are shown. Now, the viscosity presents a dependence of
N3.09, with a larger exponent β than in case (a). It is also found that for the rigid chain,
when fluctuations are not included, case (b) behaves as expected, as the viscosity is always
larger than that of the flexible chain. These findings apparently agree with the generalized
idea that CLFs can significantly speed up chain relaxation and thus the viscosity exponent
becomes larger than expected from the reptation theory. However, there is something that is
not consistent with the regular interpretation. Indeed, the fluctuation amplitude in case (b)
is smaller than that in case (a) and the average length of the chains in case (b) is larger than
that in case (a) (see equations (4) and (5)). Then, one would expect a smaller effect of the
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Figure 5. The viscosity as a function of the number of beads N plotted as η0/N3 in a log–log
plot. The parameters of the model (pa, pb, pc) are (0.9, 0.1, 1). Full symbols represent the
viscosity for chains that follow the rules of our model. Open symbols represent the viscosity for
chains of constant length, 〈L〉, for which their centers of mass move as dictated by the centers of
mass of chains that follow our model dynamics during diffusion. Note that, as a consequence of
fluctuations, the viscosity exponent becomes larger, even larger than that in case (a).

fluctuations in case (b) than in case (a) but the opposite takes place. The next case is even
more surprising.

Similar studies for chains in which pa = 0.1, pb = 0.9 and pc = 1, case (c), show striking
results. For this choice of parameters, the diffusivity and the amplitude of fluctuations are
the same as those of case (b) (see equations (8) and (5)). However, for the same value of
N, the chains in case (c) are shorter because the number of holes is smaller. Figure 6 shows
that in the range 10 � N � 100, β ∼ 2.9 is smaller than 3. As before, we also studied the
consequences of eliminating length fluctuations. Unexpectedly, in case (c) fluctuations have
the effect of reducing β. Indeed if fluctuations are eliminated, β increases to 2.98.

The configuration of a chain is determined by the sequence of holes and the lack of holes
(no-holes). The probability P of a chain configuration is simply given by multiplying the
probabilities of having or not having a hole between every couple of particles of the chain, i.e.

P = P n
h (1 − Ph)

m, (11)

where n is the number of holes and m is the number of no-holes. Note that n + m =
N − 1. There are different possible ways to arrange a determined number of holes along a
chain. Indeed, the total number of configurations of a chain of N particles with n holes is
(N − 1)!/(n!m!). Hence, the probability PN(n) of having n holes in a chain with N particles is

PN(n) = (N − 1)!

n!m!
P n

h (1 − Ph)
m, (12)

which is a binomial distribution. For Ph = 0.5, the binomial distribution is symmetric
around the average number of holes Ph(N−1). Conversely, for Ph �= 0.5 the distribution is
asymmetric. For large values of N, the distribution loses its asymmetry and tends to exhibit
a neat maximum and to decrease rapidly as one goes away from it. Eventually, as N → ∞,
the binomial distribution becomes the so-called Gaussian distribution. From this analysis,
we see that, in general, the probability distribution of the chain lengths is asymmetric. The
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Figure 6. The viscosity as a function of the number of beads N plotted as η0/N3 in a log–log
plot. The parameters of the model (pa, pb, pc) are (0.1, 0.9, 1). Full symbols represent the
viscosity for chains that follow the rules of our model. Open symbols represent the viscosity for
chains of constant length, 〈L〉, for which their centers of mass move as dictated by the centers of
mass of chains that follow our model dynamics during diffusion. Note that, as a consequence of
fluctuations, the viscosity exponent becomes smaller.

distribution is symmetric only for the case Ph = 0.5. On the other hand, a chain diffuses by
evolving from one configuration to other. It is important to note that the average time that a
chain spends with a given configuration is proportional to P (see equation (11)).

Thus, for Ph �= 0.5, the chain length distribution is asymmetric with respect to the average
length, and the chain does not spend the same time in every configuration. These ‘details’ in
the dynamics of an evolving chain can have important consequences in the resulting viscosity
as discussed below.

The anomalous results found can be understood by analyzing the behavior of a chain with
a small number of beads, as discussed in [20]. If pa > pb, the chain is said to be long (Ph >

1/2) and if pa < pb, the chain is said to be short (Ph < 1/2). For N = 3, for example, 〈L〉 ∼= 5
for a very long chain and 〈L〉 ∼= 3 for a very short chain. As discussed above, the viscosity is
calculated by integrating the function ξ (t),

ξ(t) = 1

〈L〉 〈l(t)〉. (13)

It could be expected that ξ (t) reduces exponentially with time, say proportional to exp(−t/τ ).
In this case, the viscosity, i.e. the integral of ξ , would be proportional to τ . However, the
behavior of the function ξ is not so simple, ξ (t) is not exactly an exponential function. Since
a long chain has the preference of having many holes, the first jump very probably reduces
the value of ξ . On the other hand, a short chain presents very few holes, if any, and thus first
jumps very probably do not affect ξ . This explains why, at short times, ξ reduces faster than
expected for long chains and slower than expected for short chains affecting significantly the
integral of ξ and the determined viscosity. Thus, η0 for long chains is smaller than expected
and for short chains larger than expected. Since eventually for large N, viscosities converge to
their values as originally predicted in the reptation theory, β tends to be larger for chains with
a great number of holes and smaller for chains with a small number of holes.
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The effect of eliminating fluctuations (shown in figures 3, 5 and 6) can be explained
with a similar argument. Since fluctuations imply an extending and compressing chain while
diffusing, an acceleration of the stress relaxation should occur. Results for cases (a) and (b)
show this trend. This is also observed in case (c) for large values of N. However, for small
values of N the viscosity in case (c) is smaller for the chains with rigid length. As commented
above, short chains tend to present a larger value of viscosity than expected because first jumps
do not affect ξ . Conversely, ξ for a rigid chain is reduced since the first jump leads to a lower
viscosity. As a consequence of these mechanisms, the resulting exponent β in case (c) is larger
for rigid chains.

It is very counterintuitive that contour length fluctuations can increase the viscosity. The
key point here is to realize how fluctuations take place in the model. In case (a), fluctuations
are symmetric, in the sense that chains stretch and compress symmetrically in space and all
configurations are equally probable. Thus, in case (a) we can attribute a value of β larger than
3 to the expected effect of fluctuations. The long chains of case (b) can compress more than
they stretch; as a consequence of their uneven evolution, the viscosity of chains with small
N is strongly reduced and thus β results larger in case (b) than in case (a), the opposite of
what would be expected if only the fluctuation amplitude were considered. Case (c) is the
most surprising one as the elimination of fluctuations can reduce the viscosity; a chain of case
(c), on average, needs stretching before compressing which retards the reduction of ξ (t). The
anomalies described here are due to the discrete character of the model. For large enough
values of N, these details in the dynamics become less and less relevant as fluctuations become
more symmetric. Eventually, for any values of the parameters, β converges to 3.

Similar effects to those reported here were observed in the Duke–Rubinstein model as the
ratio between stretching and shrinking rates is changed. This ratio is that between pa and pb

in the necklace model and is given through the parameter d in [28, 29]. In both models, for
small values of this ratio and not very large values of N, the β < 3 regime is found.

5. Conclusions

It is commonly accepted that contour length fluctuations increase the viscosity exponent in
reptation models of entangled linear polymers. It is argued that when fluctuations are present
the chain is compressed and stretched, which facilitates the chain escape from the tube. In
other words, for a given chain length, the viscosity is smaller. Since it is expected that this
effect decreases with N, the viscosity exponent is greater than that for the case in which there
are no fluctuations. As we have shown, these arguments are not always valid.

We have analyzed a computer model, the necklace model, which simulates the diffusion
of a chain of particles in one dimension. The free parameters of the model were chosen in
order to reproduce the diffusivity exponent of the original reptation model (and that found
in experiments). We found that the behavior of the exponents depends on the model parameters
in a non-trivial manner. As a consequence of the details in chain dynamics, the viscosity
exponent for chains of rigid length can be larger or smaller than that for chains with fluctuating
lengths. The origin of the resulting scaling was shown not to be due directly to the amplitude
of the chain length fluctuations but a consequence of how fluctuations take place in the
model. The observed behavior points to the relevance of the chain movements due to the bead
dynamics and the discrete character of the model. The conclusions of this paper are not in
contradiction with previous work (for example, [4, 5] because we are dealing with a model
that presents some details in its dynamics not previously studied. In short, when fluctuations
are symmetric their influence is the expected one; when fluctuations are not symmetric new
effects, which have not been considered before in discretized versions of the reptation model,
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can appear. Let us finally stress that, even for simple models, such as the necklace model,
very rich and non-trivial behavior appears that can help us to understand the reality.
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